Apa itu Bioinformatika ?
Bioinformatika adalah salah satu cabang baru ilmu biologi yang merupakan perpaduan antara biologi dan teknologi informasi. Menurut Durso (1997) bioinformatika adalah manajemen dan analisis informasi biologis yang disimpan dalam database.
Bioinformatika ialah ilmu yang mempelajari penerapan teknik komputasi untuk mengelola dan menganalisis informasi hayati. Bidang ini mencakup penerapan metode-metode matematika, statistika, dan informatika untuk memecahkan masalah-masalah biologi, terutama yang terkait dengan penggunaan sekuens DNA dan asam amino. Contoh topik utama bidang ini meliputi pangkalan datauntuk mengelola informasi hayati, penyejajaran sekuens (sequence alignment), prediksi struktur untuk meramalkan
Ilmu ini mengajarkan aplikasi, analisis, dan mengorganisir miliaran bit informasi genetik dalam sel mahluk hidup. Studi bioinformatika terutama didukung uleh studi genomik, biologi komputasi, dan teknologi komputer. Menurut Roderick (lihat Hieter & Boguski, 1997), genomik adalah studi yang berhubungan dengan pemetaan, sekuen, dan analisis genom. Walaupun belum jelas, secara umum Genomik bisa diartikan sebagai penggunaan informasi genom secara sistematis, dengan data eksperimental baru untuk menjawab permasalahan biologis, medis, maupun industri (Jordan, 1999).
Bioinformatika sendiri mencakup kajian yang lebih mendalam dari genomik. Dalam studi bioinformatika digunakan komputer yang mampu menyimpan data dalam jumlah yang sangat banyak dan didukung berbagai macam software untuk menganalisis jutaan data yang berasal dari mahluk hidup.
Bioinformatika merupakan ilmu terapan yang lahir dari perkembangan teknologi informasi dibidang molekular. Pembahasan dibidang bioinformatik ini tidak terlepas dari perkembangan biologi molekular modern, salah satunya peningkatan pemahaman manusia dalam bidang genomic yang terdapat dalam molekul DNA.
Kemampuan untuk memahami dan memanipulasi kode genetik DNA ini sangat didukung oleh teknologi informasi melalui perkembangan hardware dan soffware. Baik pihak pabrikan sofware dan harware maupun pihak ketiga dalam produksi perangkat lunak. Salah satu contohnya dapat dilihat pada upaya Celera Genomics, perusahaan bioteknologi Amerika Serikat yang melakukan pembacaan sekuen genom manusia yang secara maksimal memanfaatkan teknologi informasi sehingga bisa melakukan pekerjaannya dalam waktu yang singkat (hanya beberapa tahun).
Perkembangan teknologi DNA rekombinan memainkan peranan penting dalam lahirnya bioinformatika. Teknologi DNA rekombinan memunculkan suatu pengetahuan baru dalam rekayasa genetika organisme yang dikenala bioteknologi. Perkembangan bioteknologi dari bioteknologi tradisional ke bioteknologi modren salah satunya ditandainya dengan kemampuan manusia dalam melakukan analisis DNA organisme, sekuensing DNA dan manipulasi DNA.
Sejarah Bioinformatika
Istilah bioinformatics mulai dikemukakan pada pertengahan era 1980-an untuk mengacu pada penerapan komputer dalam biologi. Namun, penerapan bidang-bidang dalam bioinformatika (seperti pembuatan basis data dan pengembangan algoritma untuk analisis sekuens biologis) sudah dilakukan sejak tahun 1960-an.
Kemajuan teknik biologi molekular dalam mengungkap sekuens biologis dari protein (sejak awal 1950-an) dan asam nukleat (sejak 1960-an) mengawali perkembangan basis data dan teknik analisis sekuens biologis. Basis data sekuens protein mulai dikembangkan pada tahun 1960-an di Amerika Serikat, sementara basis data sekuens DNA dikembangkan pada akhir 1970-an di Amerika Serikat dan Jerman (pada European Molecular Biology Laboratory, Laboratorium Biologi Molekular Eropa). Penemuan tekniksekuensing DNA yang lebih cepat pada pertengahan 1970-an menjadi landasan terjadinya ledakan jumlah sekuens DNA yang berhasil diungkapkan pada 1980-an dan 1990-an, menjadi salah satu pembuka jalan bagi proyek-proyek pengungkapan genom, meningkatkan kebutuhan akan pengelolaan dan analisis sekuens, dan pada akhirnya menyebabkan lahirnya bioinformatika.
Perkembangan Internet juga mendukung berkembangnya bioinformatika. Basis data bioinformatika yang terhubung melalui Internet memudahkan ilmuwan mengumpulkan hasil sekuensing ke dalam basis data tersebut maupun memperoleh sekuens biologis sebagai bahan analisis. Selain itu, penyebaran program-program aplikasi bioinformatika melalui Internet memudahkan ilmuwan mengakses program-program tersebut dan kemudian memudahkan pengembangannya.
Bidang-Bidang yang Terkait dengan Bioinformatika :
Biophysics
Biologi molekul sendiri merupakan pengembangan yang lahir dari biophysics. Biophysics adalah sebuah bidang interdisipliner yang mengaplikasikan teknik- teknik dari ilmu Fisika untuk memahami struktur dan fungsi biologi (British Biophysical Society). Sesuai dengan definisi di atas, bidang ini merupakan suatu bidang yang luas. Namun secara langsung disiplin ilmu ini terkait dengan Bioinformatika karena penggunaan teknik-teknik dari ilmu Fisika untuk memahami struktur membutuhkan penggunaan TI.
Computational Biology
Computational biology merupakan bagian dari Bioinformatika (dalam arti yang paling luas) yang paling dekat dengan bidang Biologi umum klasik. Fokus dari computational biology adalah gerak evolusi, populasi, dan biologi teoritis daripada biomedis dalam molekul dan sel. Tak dapat dielakkan bahwa Biologi Molekul cukup penting dalam computational biology, namun itu bukanlah inti dari disiplin ilmu ini. Pada penerapan computational biology, model-model statistika untuk fenomena biologi lebih disukai dipakai dibandingkan dengan model sebenarnya.
Dalam beberapa hal cara tersebut cukup baik mengingat pada kasus tertentu eksperimen langsung pada fenomena biologi cukup sulit. Tidak semua dari computational biology merupakan Bioinformatika, seperti contohnya Model Matematika bukan merupakan Bioinformatika, bahkan meskipun dikaitkan dengan masalah biologi.
Cheminformatics
Cheminformatics adalah kombinasi dari sintesis kimia, penyaringan biologis, dan pendekatan data-mining yang digunakan untuk penemuan dan pengembangan obat (Cambridge Healthech Institute’s Sixth Annual Cheminformatics conference). Pengertian disiplin ilmu yang disebutkan di atas lebih merupakan identifikasi dari salah satu aktivitas yang paling populer dibandingkan dengan berbagai bidang studi yang mungkin ada di bawah bidang ini.
Salah satu contoh penemuan obat yang paling sukses sepanjang sejarah adalah penisilin, dapat menggambarkan cara untuk menemukan dan mengembangkan obatobatan hingga sekarang –meskipun terlihat aneh–. Cara untuk menemukan dan mengembangkan obat adalah hasil dari kesempatan, observasi, dan banyak proses kimia yang intensif dan lambat. Sampai beberapa waktu yang lalu, disain obat dianggap harus selalu menggunakan kerja yang intensif, proses uji dan gagal (trial-error process).
Kemungkinan penggunaan TI untuk merencanakan secara cerdas dan dengan mengotomatiskan proses-proses yang terkait dengan sintesis kimiawi dari komponen-komponen pengobatan merupakan suatu prospek yang sangat menarik bagi ahli kimia dan ahli biokimia. Penghargaan untuk menghasilkan obat yang dapat dipasarkan secara lebih cepat sangatlah besar, sehingga target inilah yang merupakan inti dari cheminformatics.
Ruang lingkup akademis dari cheminformatics ini sangat luas. Contoh bidang minatnya antara lain: Synthesis Planning, Reaction and Structure Retrieval, 3-D Structure Retrieval, Modelling, Computational Chemistry, Visualisation Tools and Utilities.
Genomics
Genomics adalah bidang ilmu yang ada sebelum selesainya sekuen genom, kecuali dalam bentuk yang paling kasar. Genomics adalah setiap usaha untuk menganalisa atau membandingkan seluruh komplemen genetik dari satu spesies atau lebih. Secara logis tentu saja mungkin untuk membandingkan genom-genom dengan membandingkan kurang lebih suatu himpunan bagian dari gen di dalam genom yang representatif.
Mathematical Biology
Mathematical biology lebih mudah dibedakan dengan Bioinformatika daripada computational biology dengan Bioinformatika. Mathematical biology juga menangani masalah-masalah biologi, namun metode yang digunakan untuk menangani masalah tersebut tidak perlu secara numerik dan tidak perlu diimplementasikan dalam software maupun hardware. Bahkan metode yang dipakai tidak perlu “menyelesaikan” masalah apapun; dalam mathematical biology bisa dianggap beralasan untuk mempublikasikan sebuah hasil yang hanya menyatakan bahwa suatu masalah biologi berada pada kelas umum tertentu.
Istilah proteomics pertama kali digunakan untuk menggambarkan himpunan dari protein-protein yang tersusun (encoded) oleh genom. Ilmu yang mempelajari proteome, yang disebut proteomics, pada saat ini tidak hanya memperhatikan semua protein di dalam sel yang diberikan, tetapi juga himpunan dari semua bentuk isoform dan modifikasi dari semua protein, interaksi diantaranya, deskripsi struktural dari proteinprotein dan kompleks-kompleks orde tingkat tinggi dari protein, dan mengenai masalah tersebut hampir semua pasca genom.
Pharmacogenomics
Pharmacogenomics adalah aplikasi dari pendekatan genomik dan teknologi pada identifikasi dari target-target obat. Contohnya meliputi menjaring semua genom untuk penerima yang potensial dengan menggunakan cara Bioinformatika, atau dengan menyelidiki bentuk pola dari ekspresi gen di dalam baik patogen maupun induk selama terjadinya infeksi, atau maupun dengan memeriksa karakteristik pola-pola ekspresi yang ditemukan dalam tumor atau contoh dari pasien untuk kepentingan diagnosa (kemungkinan untuk mengejar target potensial terapi kanker).
Istilah pharmacogenomics digunakan lebih untuk urusan yang lebih “trivial” — tetapi dapat diargumentasikan lebih berguna– dari aplikasi pendekatan Bioinformatika pada pengkatalogan dan pemrosesan informasi yang berkaitan dengan ilmu Farmasi dan Genetika, untuk contohnya adalah pengumpulan informasi pasien dalam database.
Pharmacogenetics
Tiap individu mempunyai respon yang berbeda-beda terhadap berbagai pengaruh obat; sebagian ada yang positif, sebagian ada yang sedikit perubahan yang tampak pada kondisi mereka dan ada juga yang mendapatkan efek samping atau reaksi alergi. Sebagian dari reaksi-reaksi ini diketahui mempunyai dasar genetik. Pharmacogenetics adalah bagian dari pharmacogenomics yang menggunakan metode genomik/Bioinformatika untuk mengidentifikasi hubungan-hubungan genomik, contohnya SNP (Single Nucleotide Polymorphisms), karakteristik dari profil respons pasien tertentu dan menggunakan informasi-informasi tersebut untuk memberitahu administrasi dan pengembangan terapi pengobatan.
Secara menakjubkan pendekatan tersebut telah digunakan untuk “menghidupkan kembali” obat-obatan yang sebelumnya dianggap tidak efektif, namun ternyata diketahui manjur pada sekelompok pasien tertentu. Disiplin ilmu ini juga dapat digunakan untuk mengoptimalkan dosis kemoterapi pada pasien-pasien tertentu. Gambaran dari sebagian bidang-bidang yang terkait dengan Bioinformatika di atas memperlihatkan bahwa Bioinformatika mempunyai ruang lingkup yang sangat luas dan mempunyai peran yang sangat besar dalam bidangnya. Bahkan pada bidang pelayanan kesehatan Bioinformatika menimbulkan disiplin ilmu baru yang menyebabkan peningkatan pelayanan kesehatan.
Minggu, 05 Juni 2016
Komputasi dan parallel processing, hubungan antara komputasi modern dan parallel processing
A. Komputasi dan Paralel Processing
1. Komputasi
Sebagian besar manusia di dunia mengetahui apa itu komputer, komputer berbeda dengan komputasi. Jadi, komputasi merupakan suatu cara untuk menemukan pemecahan permasalahan dari data input dengan suatu algoritma.
Pengertian Komputasi adalah proses menghitung, membandingkan dan berbagai operasi perhitungan matematika dan logika yang bertujuan untuk menyelesaikan suatu masalah yang dikerjakan dengan program komputer yang sudah disusun sesuai dengan Algoritma yang benar.
Setiap jenis perhitungan atau penggunaan teknologi komputer dalam pengolahan informasi. Perhitungan adalah proses setelah yang jelas model yang dipahami dan dinyatakan dalam suatu algoritma , protokol , topologi jaringan , dll Perhitungan juga merupakan subyek utama dari ilmu komputer: menyelidiki apa yang dapat atau tidak dapat dilakukan dengan cara komputasi.
Dalam prakteknya, perhitungan digital sering digunakan untuk mensimulasikan proses alam (misalnya, perhitungan Evolusi ), termasuk yang lebih alami dijelaskan oleh model analog perhitungan (misalnya, jaringan syaraf tiruan ).
2. Parallel Processing (Pemrosesan Paralel)
Yaitu menggunakan lebih dari satu CPU untuk menjalankan sebuah program secara simultan. Idealnya, parallel processing membuat program berjalan lebih cepat karena semakin banyak CPU yang digunakan. Tetapi dalam praktek, seringkali sulit membagi program sehingga dapat dieksekusi oleh CPU yang berbeda-beda tanpa berkaitan di antaranya.
Dalam komputer, pemrosesan paralel merupakan pengolahan dari Program instruksi dengan membagi mereka di antara beberapa prosesor dengan tujuan untuk menjalankan program dalam waktu kurang. Dalam komputer paling awal, hanya satu program berlari pada suatu waktu. Sebuah program komputasi-intensif yang memakan waktu satu jam untuk menjalankan dan menyalin Program tape yang mengambil satu jam untuk menjalankan akan mengambil total dua jam untuk menjalankan. Bentuk awal dari pemrosesan paralel memungkinkan eksekusi interleaved kedua program bersama-sama. Komputer akan memulai operasi I / O, dan sementara itu sedang menunggu operasi untuk menyelesaikan, itu akan mengeksekusi program prosesor-intensif. Waktu eksekusi total untuk dua pekerjaan akan menjadi sedikit lebih dari satu jam.
Peningkatan berikutnya multiprogramming. Dalam sistem multiprogramming, beberapa program telah dikirim pengguna yang masing-masing diperbolehkan untuk menggunakan prosesor untuk waktu yang singkat. Untuk pengguna tampak bahwa semua program yang melaksanakan pada saat yang sama. Masalah pertama muncul pertentangan sumber daya di sistem ini. Permintaan eksplisit untuk sumber daya menyebabkan masalah dari kebuntuan. Kompetisi untuk sumber daya pada mesin tanpa dasi-melanggar instruksi mengarah pada rutin critical section.
Langkah berikutnya dalam pengolahan paralel adalah pengenalan multiprocessing. Dalam sistem ini, dua atau lebih prosesor berbagi pekerjaan yang akan dilakukan. Versi awal memiliki master / slave konfigurasi. Salah satu prosesor (master) diprogram untuk bertanggung jawab atas semua pekerjaan dalam sistem, yang lain (budak) dilakukan hanya tugas-tugas itu diberikan oleh master. Pengaturan ini diperlukan karena tidak kemudian mengerti bagaimana program mesin sehingga mereka bisa bekerja sama dalam pengelolaan sumber daya sistem.
- Komputasi Paralel
Merupakan salah satu teknik melakukan komputasi secara bersamaan dengan memanfaatkan beberapa komputer secara bersamaan. Biasanya diperlukan saat kapasitas yang diperlukan sangat besar, baik karena harus mengolah data dalam jumlah besar ataupun karena tuntutan proses komputasi yang banyak.
- Pemrograman paralel
Merupakan suatu teknik pemrograman komputer yang memungkinkan eksekusi perintah/operasi secara bersamaan baik dalam komputer dengan satu (prosesortunggal) ataupun banyak (prosesor ganda dengan mesin paralel) CPU.Tujuan utama dari pemrograman parallel adalah untuk meningkatkan performa komputasi. Semakin banyak hal yang bisa dilakukan secara bersamaan (dalam waktu yang sama), semakin banyak pekerjaan yang bisa diselesaikan.
Komputasi paralel membutuhkan:
- algoritma
- bahasa pemrograman
- compiler
Parallel processing berbeda dengan multitasking, yaitu satu CPU mengeksekusi beberapa program sekaligus. Parallel processing disebut juga parallel computing. Contoh struktur dari parallel processing sbb :
Aristektur Komputer Parallel
Komputer SISD (Single Instruction stream-Single Data stream)
Komputer SIMD (Single Instruction stream-Multiple Data stream)
Komputer MISD (Multiple Instruction stream-Single Data stream)
Komputer MIMD (Multiple Instruction stream-Multiple Data stream
B. Hubungan antara komputasi modern dengan paralel processing
Hubungan antara komputasi modern dan parallel processing sangat berkaitan, karena penggunaan komputer saat ini atau komputasi dianggap lebih cepat dibandingkan dengan penyelesaian masalah secara manual. Dengan begitu peningkatan kinerja atau proses komputasi semakin diterapkan, dan salah satu caranya adalah dengan meningkatkan kecepatan perangkat keras. Dimana komponen utama dalam perangkat keras komputer adalah processor. Sedangkan parallel processing adalah penggunaan beberapa processor (multiprocessor atau arsitektur komputer dengan banyak processor) agar kinerja computer semakin cepat.
Pengolahan paralel istilah digunakan untuk mewakili kelas besar teknik yang digunakan untuk memberikan tugas pengolahan simultan data untuk tujuan meningkatkan kecepatan komputasi dari sistem komputer. Keuntungan: waktu eksekusi lebih cepat, throughput jadi lebih tinggi.
Kekurangan: perangkat keras lainnya yang dibutuhkan, kebutuhan daya juga lebih. Tidak baik untuk daya rendah dan perangkat mobile.
Sehingga dikarenakan adanya keuntungan dan kemampuan dari parallel processing, maka dianggap parallel processing adalah salah satu teknik komputasi modern.
Kinerja Komputasi Modern dengan menggunakan Paralel Processing
Kinerja komputasi dengan menggunakan paralel processing itu menggunakan dan memanfaatkan beberapa komputer atau CPU untuk menemukan suatu pemecahan masalah dari masalah yang ada. Sehingga dapat diselesaikan dengan cepat daripada menggunakan satu komputer saja. Komputasi dengan paralel processing akan menggabungkan beberapa CPU, dan membagi-bagi tugas untuk masing-masing CPU tersebut. Jadi, satu masalah terbagi-bagi penyelesaiannya. Tetapi ini untuk masalah yang besar saja, komputasi yang masalah kecil, lebih murah menggunakan satu CPU saja.
Langganan:
Postingan (Atom)